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Introduction

IIR filters that would satisfy prescribed specifications can be
designed by using a variety of optimization algorithms.

Five general steps are involved, as follows:

1. Formulate a suitable objective (cost) function.
2. Deduce the gradient of the objective function and, if

necessary, the Hessian matrix.
3. Choose an appropriate weighting function.
4. Select a suitable optimization algorithm.
5. Run the optimization algorithm for increasing filter orders

until an order is found that will satisfy the required
specifications.

Note: The material for this module is taken from Antoniou, Digital
Signal Processing: Signals, Systems, and Filters,
Chap. 16.
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Problem Formulation

� An Nth-order IIR filter can be represented by a
discrete-time transfer function of the form

H (z) = H0

J∏
j=1

a0j + a1j z + z2

b0j + b1j z + z2

where aij and bij are real coefficients, J = N/2, and H0 is a
positive multiplier constant.
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Problem Formulation

� An Nth-order IIR filter can be represented by a
discrete-time transfer function of the form

H (z) = H0

J∏
j=1

a0j + a1j z + z2

b0j + b1j z + z2

where aij and bij are real coefficients, J = N/2, and H0 is a
positive multiplier constant.

� As presented, H (z) would be of even order; however, an
odd-order H (z) can be obtained by letting

a0j = b0j = 0

for one value of j .
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Problem Formulation Cont’d

The amplitude response of an arbitrary IIR filter can be
deduced as

M (x, ω) = |H (ejωT )|
where ω is the frequency and

x = [a01 a11 b01 b11 · · · b1J H0]T

is a column vector with 4J + 1 elements.
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Problem Formulation Cont’d

Straightforward analysis gives the amplitude response as

M (x, ω) = H0

J∏
j=1

Nj (ω)

Dj (ω)

where

Nj (ω) = [1 + a2
0j + a2

1j + 2a1j (1 + a0j ) cos ωT + 2a0j cos 2ωT ] 1
2

and

Dj (ω) = [1 + b2
0j + b2

1j + 2b1j (1 + b0j ) cos ωT + 2b0j cos 2ωT ] 1
2

for j = 1, 2, . . . , J.
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Problem Formulation Cont’d

� If M0(ω) is the specified amplitude response, the
approximation error can be expressed as

e(x, ω) = M (x, ω) − M0(ω)
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Problem Formulation Cont’d

� If M0(ω) is the specified amplitude response, the
approximation error can be expressed as

e(x, ω) = M (x, ω) − M0(ω)

� By sampling e(x, ω) at frequencies ω1, ω2, . . . , ωK , the
column vector

E(x) = [e1(x) e2(x) . . . eK (x)]T

can be formed where

ei (x) = e(x, ωi )

for i = 1, 2, . . . , K .
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Problem Formulation Cont’d

G
ai

n 

ω1 ω2 ωK 

M(x, ω) 

M0(ω) 

e(x, ωi)

ω, rad/s 
ωi
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Problem Formulation Cont’d

� An IIR filter can be designed by finding a point x = �
x such

that
ei (

�
x ) ≈ 0 for i = 1, 2, . . . , K
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Problem Formulation Cont’d

� An IIR filter can be designed by finding a point x = �
x such

that
ei (

�
x ) ≈ 0 for i = 1, 2, . . . , K

� Such a point can be obtained by minimizing the Lp norm of
E(x), which is defined as

�(x) = Lp(x) = ||E(x)||p =
[

K∑
i=1

|ei (x)|p
]1/p

where p is a positive integer.
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Problem Formulation Cont’d

For filter design, the most important norms are the L2 and L∞
norms which are defined as

L2(x) =
[

K∑
i=1

|ei (x)|2
]1/2

and L∞(x) = lim
p→∞

{
K∑

i=1

|ei (x)|p
}1/p

= �

E (x) lim
p→∞

{
K∑

i=1

[
|ei (x)|
�

E (x)

]p}1/p

= �

E (x)

where
�

E (x) = max
1 ≤ i ≤ K

|ei (x)|.
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Problem Formulation Cont’d

� In summary, an IIR filter with a amplitude response that
approaches a specified amplitude response M0(ω) can be
designed by solving the optimization problem

minimize
x

�(x)
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Problem Formulation Cont’d

� In summary, an IIR filter with a amplitude response that
approaches a specified amplitude response M0(ω) can be
designed by solving the optimization problem

minimize
x

�(x)

� If
�(x) = L2(x)

a least-squares solution is obtained and if

�(x) = L∞(x)

the outcome will be a so-called minimax solution.
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Gradient of Objective Function

For an objective function defined in terms of the Lp norm, the
gradient of the objective function can be deduced as

∇�k (x) =
{

K∑
i=1

[
|ei (x)|
�

E (x )

]p}(1/p)−1 K∑
i=1

[
|ei (x)|
�

E (x )

]p−1

∇|ei (x)|

where
∇|ei (x)| = [sgn ei (x)]∇ei (x)

with

sgnei (x) =
{

1 if ei (x) ≥ 0

−1 otherwise
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Gradient of Objective Function Cont’d

The elements of ∇ei (x) can be deduced as follows by
differentiating the amplitude response:

∂ei (x)

∂a0l
= a0l + a1l cos ωi T + cos 2ωi T

[Nl (ωi )]2
· M (x, ωi )

∂ei (x)

∂a1l
= a1l + (1 + a0l ) cos ωi T

[Nl (ωi )]2
· M (x, ωi )

∂ei (x)

∂b0l
= −b0l + b1l cos ωi T + cos 2ωi T

[Dl (ωi )]2
· M (x, ωi )

∂ei (x)

∂b1l
= −b1l + (1 + b0l ) cos ωi T

[Dl (ωi )]2
· M (x, ωi )

∂ei (x)

∂H0
= 1

H0
· M (x, ωi )

for l = 1, 2, . . . , J and i = 1, 2, . . . , K
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Optimization Algorithms

� The optimization problem under consideration can be
solved by using a variety of algorithms, such as the
steepest-descent or Newton algorithm or one of several
quasi-Newton algorithms.
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Optimization Algorithms

� The optimization problem under consideration can be
solved by using a variety of algorithms, such as the
steepest-descent or Newton algorithm or one of several
quasi-Newton algorithms.

� Quasi-Newton algorithms offer a number of important
advantages as follows:

– They do not require the Hessian matrix.

– Can be used with inexact line searches which lead to
improved efficiency.

– Are robust.

– Offer fast convergence.
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Quasi-Newton Algorithms

A generic quasi-Newton Algorithm is as follows:

1. Input x0 and ε. Set S0 = In and k = 0. Compute g0.
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Quasi-Newton Algorithms

A generic quasi-Newton Algorithm is as follows:

1. Input x0 and ε. Set S0 = In and k = 0. Compute g0.

2. Set dk = −Sk gk and find αk , the value of α that minimizes
f (xk + α dk ), using a line search.
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Quasi-Newton Algorithms

A generic quasi-Newton Algorithm is as follows:

1. Input x0 and ε. Set S0 = In and k = 0. Compute g0.

2. Set dk = −Sk gk and find αk , the value of α that minimizes
f (xk + α dk ), using a line search.

3. Set δk = α k dk and xk+1 = xk + δk , and compute
fk+1 = f (xk+1).
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Quasi-Newton Algorithms

A generic quasi-Newton Algorithm is as follows:

1. Input x0 and ε. Set S0 = In and k = 0. Compute g0.

2. Set dk = −Sk gk and find αk , the value of α that minimizes
f (xk + α dk ), using a line search.

3. Set δk = α k dk and xk+1 = xk + δk , and compute
fk+1 = f (xk+1).

4. If ‖δk ‖2 < ε, then output
�
x = x k+1, f (

�
x ) = fk+1 and stop.
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Quasi-Newton Algorithms

A generic quasi-Newton Algorithm is as follows:

1. Input x0 and ε. Set S0 = In and k = 0. Compute g0.

2. Set dk = −Sk gk and find αk , the value of α that minimizes
f (xk + α dk ), using a line search.

3. Set δk = α k dk and xk+1 = xk + δk , and compute
fk+1 = f (xk+1).

4. If ‖δk ‖2 < ε, then output
�
x = x k+1, f (

�
x ) = fk+1 and stop.

5. Compute gk+1 and set γk = gk+1 − gk .
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Quasi-Newton Algorithms

A generic quasi-Newton Algorithm is as follows:

1. Input x0 and ε. Set S0 = In and k = 0. Compute g0.

2. Set dk = −Sk gk and find αk , the value of α that minimizes
f (xk + α dk ), using a line search.

3. Set δk = α k dk and xk+1 = xk + δk , and compute
fk+1 = f (xk+1).

4. If ‖δk ‖2 < ε, then output
�
x = x k+1, f (

�
x ) = fk+1 and stop.

5. Compute gk+1 and set γk = gk+1 − gk .

6. Compute Sk+1 = Sk + Ck .
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Quasi-Newton Algorithms

A generic quasi-Newton Algorithm is as follows:

1. Input x0 and ε. Set S0 = In and k = 0. Compute g0.

2. Set dk = −Sk gk and find αk , the value of α that minimizes
f (xk + α dk ), using a line search.

3. Set δk = α k dk and xk+1 = xk + δk , and compute
fk+1 = f (xk+1).

4. If ‖δk ‖2 < ε, then output
�
x = x k+1, f (

�
x ) = fk+1 and stop.

5. Compute gk+1 and set γk = gk+1 − gk .

6. Compute Sk+1 = Sk + Ck .

7. Check Sk+1 for positive definiteness and if it is found to be
nonpositive definite force it to become positive definite.
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Quasi-Newton Algorithms

A generic quasi-Newton Algorithm is as follows:

1. Input x0 and ε. Set S0 = In and k = 0. Compute g0.

2. Set dk = −Sk gk and find αk , the value of α that minimizes
f (xk + α dk ), using a line search.

3. Set δk = α k dk and xk+1 = xk + δk , and compute
fk+1 = f (xk+1).

4. If ‖δk ‖2 < ε, then output
�
x = x k+1, f (

�
x ) = fk+1 and stop.

5. Compute gk+1 and set γk = gk+1 − gk .

6. Compute Sk+1 = Sk + Ck .

7. Check Sk+1 for positive definiteness and if it is found to be
nonpositive definite force it to become positive definite.

8. Set k = k + 1 and go to step 2.
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Quasi-Newton Algorithms Cont’d

Notes:
� x 0 is the initial point.
� ε is a termination tolerance.
� I n is the n × n identity matrix.
� d k is the direction vector at the start of the k th iteration.
� gk is the gradient at the start of the k th iteration.
� Sk is an approximation to the inverse Hessian at the start

of the k th iteration.
� Ck is a correction matrix.
�

�
x is the minimum point and f (

�
x ) is the minimum value of

the objective function.
� Efficiency can be achieved by using Fletcher’s inexact line

search in Step 2.
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Quasi-Newton Algorithms Cont’d

� Several quasi-Newton algorithms are available. They differ
from one another in the formula used to update matrix Sk+1

in Step 7 of the generic quasi-Newton algorithm presented.
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Quasi-Newton Algorithms Cont’d

� Several quasi-Newton algorithms are available. They differ
from one another in the formula used to update matrix Sk+1

in Step 7 of the generic quasi-Newton algorithm presented.

� The two most important algorithms of this family are the
Davidon-Fletcher-Powell (DFP) algorithm in which

Sk+1 = Sk + δk δT
k

γ T
k δk

− Sk γk γ T
k Sk

γ T
k Sk γk

and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm in which

Sk+1 = Sk +
(

1 + γ T
k Sk γk

γ T
k δk

)
δk δT

k

γ T
k δk

− (δk γ T
k Sk + Sk γk δT

k )

γ T
k δk
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Choice between L2 and L∞ Solutions

� L2 solutions are easier to obtain and filters based on these
solutions will reject more signal power in stopbands.

However, the passband error tends to have large peaks
near passband edges, which are undesirable in practice.
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Choice between L2 and L∞ Solutions

� L2 solutions are easier to obtain and filters based on these
solutions will reject more signal power in stopbands.

However, the passband error tends to have large peaks
near passband edges, which are undesirable in practice.

� L∞ solutions are more difficult to obtain because they
require the application of minimax algorithms which entail
much more computation.

However, they offer the advantage that the approximation
error tends to be uniformly distributed in passbands, i.e., it
tends to be equiripple as in elliptic filters.
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Minimax Algorithms

� Minimax algorithms are essentially sequential algorithms
that involve a series of unconstrained optimizations.

� A representative algorithm of this class is the so-called
least-pth algorithm.

� Another popular minimax algorithm is one proposed by
Charalambous (see References).
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Least-pth Minimax Algorithm

1. Input
�
x 0 and ε1. Set k = 1, p = 2, μ = 2,

�

E 0 = 1099.
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Least-pth Minimax Algorithm

1. Input
�
x 0 and ε1. Set k = 1, p = 2, μ = 2,

�

E 0 = 1099.

2. Initialize frequencies ω1, ω2, . . . , ωK .
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Least-pth Minimax Algorithm

1. Input
�
x 0 and ε1. Set k = 1, p = 2, μ = 2,

�

E 0 = 1099.

2. Initialize frequencies ω1, ω2, . . . , ωK .

3. Using
�
x k−1 as initial value, minimize

�k (x) = �

E (x)

{
K∑

i=1

[
|ei (x)|
�

E (x)

]p}1/p

where �

E (x) = max
1≤i≤K

|ei (x)|

with respect to x, to obtain
�
x k . Set

�

E k = �

E (
�
x ).
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Least-pth Minimax Algorithm

1. Input
�
x 0 and ε1. Set k = 1, p = 2, μ = 2,

�

E 0 = 1099.

2. Initialize frequencies ω1, ω2, . . . , ωK .

3. Using
�
x k−1 as initial value, minimize

�k (x) = �

E (x)

{
K∑

i=1

[
|ei (x)|
�

E (x)

]p}1/p

where �

E (x) = max
1≤i≤K

|ei (x)|

with respect to x, to obtain
�
x k . Set

�

E k = �

E (
�
x ).

4. If |�E k−1 − �

E k | < ε1, then output
�
x k and

�

E k , and stop.
Otherwise, set p = μp, k = k + 1 and go to step 3.
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Stability

� Least-squares or minimax algorithms will often yield
discrete-time transfer functions with poles outside the unit
circle |z | = 1, and such transfer functions represent
unstable filters.
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Stability

� Least-squares or minimax algorithms will often yield
discrete-time transfer functions with poles outside the unit
circle |z | = 1, and such transfer functions represent
unstable filters.

� Fortunately, it is possible to eliminate this problem through
a stabilization technique that has been known for a number
of years.
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Stability Cont’d

� Let us assume that an optimization algorithm has produced
a discrete-time transfer function

H (z) = N (z)

D(z)
= N (z)

D ′(z)
∏k

i=1(z − p̃i )

with k poles p̃1, p̃2, . . . , p̃k that lie outside the unit circle.
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Stability Cont’d

� Let us assume that an optimization algorithm has produced
a discrete-time transfer function

H (z) = N (z)

D(z)
= N (z)

D ′(z)
∏k

i=1(z − p̃i )

with k poles p̃1, p̃2, . . . , p̃k that lie outside the unit circle.

� A stable transfer function that yields the same amplitude
response can be obtained as

H ′(z) = H0
N (z)

D ′(z)
∏k

i=1(z − 1/p̃i)
=

∑N
i=0 a′

i z
i

1 +∑N
i=1 b ′

i z
i

where

H0 = 1∏k
i=1 p̃i
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Prescribed Specifications

� Optimization algorithms in general tend to yield filters in
which the maximum values of the approximation error in the
various passbands and stopbands are of the same order.
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Prescribed Specifications

� Optimization algorithms in general tend to yield filters in
which the maximum values of the approximation error in the
various passbands and stopbands are of the same order.

� In practice, the prescribed passband ripples and minimum
stopband attenuations vary wildly from band to band and
from one application to the next, which means that the
required maximum values of the passband and stopband
errors also vary wildly.
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Prescribed Specifications

� Optimization algorithms in general tend to yield filters in
which the maximum values of the approximation error in the
various passbands and stopbands are of the same order.

� In practice, the prescribed passband ripples and minimum
stopband attenuations vary wildly from band to band and
from one application to the next, which means that the
required maximum values of the passband and stopband
errors also vary wildly.

� In order to achieve desired specifications, we need be able
to control the relative magnitudes of the maximum
passband and stopband errors, and this is achieved
through the use of a weighting.
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Prescribed Specifications Cont’d

� Weighting essentially involves constructing a modified error
function of the form

e ′
i (x) = W (ω)ei(x)

= W (ω)[M (x, ωi) − M0(ωi )]
where W (ω) is a scalar weighting function which is used to
emphasize or deemphasize the approximation error in
selected passbands or stopbands so as to decrease or
increase its magnitude in those bands.
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Prescribed Specifications Cont’d

� Weighting essentially involves constructing a modified error
function of the form

e ′
i (x) = W (ω)ei(x)

= W (ω)[M (x, ωi) − M0(ωi )]
where W (ω) is a scalar weighting function which is used to
emphasize or deemphasize the approximation error in
selected passbands or stopbands so as to decrease or
increase its magnitude in those bands.

� Typically, W (ω) is a piecewise constant function which is
assigned a value greater or less than one to decrease or
increase the magnitude of the approximation error is a
given band.
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Prescribed Specifications Cont’d

Arbitrary filter specifications can be achieved as follows:

1. Choose a suitable weighting function on the basis of the
prescribed specifications.
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Prescribed Specifications Cont’d

Arbitrary filter specifications can be achieved as follows:

1. Choose a suitable weighting function on the basis of the
prescribed specifications.

2. Design filters for increasing filter orders until a filter order is
found that would satisfy the required specifications.

Evidently, this is a cut-and-try method and it could entail a
considerable amount of computation.
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Prescribed Specifications Cont’d

� Assuming a filter with m bands, the weighting function can
be deduced from the specified passband ripples and the
minimum stopband attenuations as detailed below.
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Prescribed Specifications Cont’d

� Assuming a filter with m bands, the weighting function can
be deduced from the specified passband ripples and the
minimum stopband attenuations as detailed below.

� Let δ1, δ2, . . ., δk , . . ., δm be the maximum passband and
stopband errors imposed by the filter specifications where

δi = 100.05Api −1

100.05Api + 1

for a passband with ripple Api dB and

δj = 10−0.05Aaj

for a stopband with a minimum attenuation Aaj dB.
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Prescribed Specifications Cont’d

� Now assume that the weighting function W (ω) is a
piecewise-constant function with positive values W1, W2,
. . ., Wk , . . ., Wm for bands 1, 2, . . ., k , . . ., m, respectively.
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Prescribed Specifications Cont’d

� Now assume that the weighting function W (ω) is a
piecewise-constant function with positive values W1, W2,
. . ., Wk , . . ., Wm for bands 1, 2, . . ., k , . . ., m, respectively.

� Suitable scaling constants can be assigned as

W1 = δk

δ1
, W2 = δk

δ2
, . . . , Wk−1 = δk

δk−1

Wk = 1

Wk+1 = δk

δk+1
, Wk+2 = δk

δk+2
, . . . , Wm = δk

δm

From example, in a BP filter we could assign W1 = δ2/δ1,

W2 = 1, W3 = δ2/δ3 or W1 = 1, W2 = δ1/δ2, W3 = δ1/δ3 or
W1 = δ3/δ1, W2 = δ3/δ2, W3 = 1.
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Design Examples

A variety of design examples can be found in Antoniou, Digital
Signal Processing, Chap. 14, and in Antoniou and Lu, Practical
Optimization, Chaps. 9 and 16.
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Summary

� A great variety of optimization algorithms can be used for
the design of IIR filters.
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Summary

� A great variety of optimization algorithms can be used for
the design of IIR filters.

� Quasi-Newton algorithms work very well.
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Summary

� A great variety of optimization algorithms can be used for
the design of IIR filters.

� Quasi-Newton algorithms work very well.
� The optimization approach is very flexible in that it can be

used to design filters with arbitrary amplitude and/or phase
responses.
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Summary

� A great variety of optimization algorithms can be used for
the design of IIR filters.

� Quasi-Newton algorithms work very well.
� The optimization approach is very flexible in that it can be

used to design filters with arbitrary amplitude and/or phase
responses.

� In FIR filters as well as IIR filters based on the bilinear
transformation, techniques are availalble that can be used
to predict the required filter order to achieve prescribed
specifications.

Unfortunately, in IIR filters designed by optimization the
filter order can only be deduced through a cut-and-try
approach.
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Summary

� A great variety of optimization algorithms can be used for
the design of IIR filters.

� Quasi-Newton algorithms work very well.
� The optimization approach is very flexible in that it can be

used to design filters with arbitrary amplitude and/or phase
responses.

� In FIR filters as well as IIR filters based on the bilinear
transformation, techniques are availalble that can be used
to predict the required filter order to achieve prescribed
specifications.

Unfortunately, in IIR filters designed by optimization the
filter order can only be deduced through a cut-and-try
approach.

� As in any other methodology based on optimization, a large
amount of computation is required to complete a design.
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This slide concludes the presentation.
Thank you for your attention.
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